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Abstract 

In the most recent decades, alcohol sales have increased in the United States. The goal of 

this project is to predict monthly American alcohol sales using methods of time series 

analysis and R software. Initially, we construct a proper SARIMA model based on the 

stationary data, which we obtain by differencing and transforming the original data. We 

then perform diagnostic checks to ensure our model’s feasibility. Our forecast predicts the 

retail sales of booze between December 2017 and November 2018, which lies between the 

95% confidence interval. In addition, we performed spectral analysis to gain a deeper 

understanding of our final model.  

Introduction 

Beer, wine, and spirits have shaped American history and have left an indelible mark on 

this nation’s culture. Alcohol has a significant presence in this country and is glorified by 

the media. Thus, booze sales have increased steadily in the past century and it is worth our 

attention. It is therefore important that we examine its trend, and forecast its growth to be 

able to recognize how American physical and mental health will be affected. Additionally, 

analyzing alcohol sales provides deeper insight into the dynamic United States economy 

and the general well-being of the country.  

 

Our dataset measures the monthly retail sales of beer, wine and liquor stores from January 

1992 to November 2018, in millions of dollars. This data set is important to forecast to 

better understand the United State’s future and attitude towards drinking. We have chosen 

this data not only for its relevance to society but for its large sample size that would yield 

accurate results. From the original time series plot, we notice an upward trend and slight 

heteroscedasticity. Additionally, we notice a seasonal pattern at uniform intervals, which is 

reasonable since our data is recorded monthly by the ​U.S. Bureau of the Census​. We perform 

a box-cox transformation with λ = -0.22 and difference at lag 12 to obtain a stationary 
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series. Since the variance is minimized after conducting the differencing and the 

transformation, we recognize that the data is ready to be identified as a certain model with 

its estimated orders. After analyzing our ACF and PACF plots and considering the AIC, AICc 

and BIC values, we narrow down our final model to be SARIMA(3,0,0)x(1,1,2)​ 12.​ We 

forecast from December 2017 to November 2018 and observe that our prediction lies in 

the 95% confidence interval and that our predicted values are approximately close to the 

true values in the original dataset. Furthermore, we conduct Spectral Analysis to examine 

its periodic behavior and conclude by the Fisher and Kolmogorov-Smirnov test that the 

residuals of the data are White Noise.  Overall, our model proves to be feasible.  

 

 

 

Percentage of people who binge-drink in each state 
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Exploratory Data Analysis 

Data Exploration 

For this project, we used a dataset that included two variables: monthly dates from January 

1992 to November 2018, and the monthly total retail sales of beer, wine, and liquor in the 

United States measured in millions of dollars. This dataset contains 323 observations. 

Below is a glimpse of the data we are working with.  

 

We derive from this plot that the time series data has a very strong seasonal component of 

period d=12, which is understandable since the data is recorded monthly. Logically, the 

data shows an increasing trend, a result of both an increase in consumption over the years 

as well as monetary inflation.  The range of values that the series can assume is clearly not 

constant across all time, concluding that the variance does vary with time. A 

transformation will be needed on this data to assist with normalization. Taking a closer 

5 
 



Aragon, Fields, Gershman, Grazda 
 
 

look at the seasonal plot we observe a large increase in sales in December and a large 

decrease in sales  

in January. These considerable peaks and valleys are most likely a result of the holiday 

season. Many people drink on Thanksgiving, Christmas and New Years, yet conversely, 

many Americans begin their “New Year's Resolution” in January in an attempt to be 

healthier and reduce intake of alcoholic beverages. Another element to note is alcohol sales 

begin to spike in the summer, the time of the year when many will take a vacation from 

work and school.  

 

Data Transformation 

As stated above the variance does vary with time, therefore the dataset is non-stationary. 

To make this data stationary we need to first stabilize the variance. Following this 

transformation, we will detrend and deseasonalize the data. 

 

Box-Cox Transformation for Variance Stabilization  

Due to heteroscedasticity, our original time series violated our constant error of variance 

assumption. A Box-Cox transformation is a way to transform non-normal dependent 
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variables into a normal shape. Using the Box-Cox package in R we graph the log-Likelihood 

in relation to  defined by  where  ≠0 .λ (B )  f t λ =  λ
(B λ−1)t λ  

 

 Thus calculating our  = -.02222. We transform our data points according to the Box-Coxλ  

transform and raise them to the power of   resulting in a new time series:λ  

B  X t
 =  t

−0.2222  

Though the data is now more normally distributed, it is not yet stationary. We must remove 

seasonality and trend.  The resulting variance after this transformation is ​4.759559e​-05​.  

 

Removing Seasonality and Trend 

Differencing the data to remove the seasonality and trend will be our next goal on our path 

to developing a working model. Previously, it was stated that there seemed to be a strong 

monthly seasonal component, therefore, lagging the difference by 12 seemed appropriate.  
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The plot above is the dataset differenced at lag 12. The resulting variance after the 

differencing is ​3.633156e​-07​. Next, we must remove the trend using the transformed dataset 

with the seasonality removed. Once again we will difference the dataset, yet this time using 

a lag of 1.  
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The plot of the transformed data deseasonalized and detrended is above. Then, to 

determine which time series we want to build a model on, we want to use the time series 

that has the lowest variance.  To do this, we differenced the model at lag 12 to get rid of 

seasonality, differenced this the lag-12 differenced series once more to remove any trend 

we observed in the original data, and then repeated this 1-difference twice more to 

examine a trend of overfitting, which resulted in the following plot. 
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In regards to the transformation we applied to the data, we observe a reduction on orders 

of magnitude about 75 times from the Box-Cox transformed data to the final 

transformation. Due to this, the original variance is not included in the above plot so that 

the subtle evidence of overdifferencing will be visible due to the scale of the changes in the 

differenced transformed data’s variances. The resulting variance of taking an additional 

difference ​after ​differencing at lag 12 is slightly larger than that of the deseasonalized data 

set with a resulting increase in variance of 5.767335e​-07​. Since the variance increases, we 

consider removing the trend to be overdifferencing. Nevertheless, we differenced the data 

again to check how the variance reacts to another lag. As expected, the variance increases 

substantially to 1.872324e​-06​ therefore, differencing at lag 1 after removing seasonality 

would be considered over-differencing. Our final transformation of the original data is then 

∇ X   B   Y t =  12 t = ∇12 t
−0.2222

 

Using our final transformation Y​t ​an augmented Dickey-Fuller test was performed. The 

result was a p-value of less than 0.01, and thus a rejection of the null hypothesis that our 
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time series is non-stationary. Thus, Y​t ​is, in fact, a stationary dataset. At this point, we can 

move on to model identification and estimation.  

Model Selection 

Preliminary Model Identification 

For our sales data, we will identify a seasonal ARIMA model in the form of: 

ARIMA(p, , ) P , , )S d q × ( D Q s  

In our data, we have identified the season to be 12, so we can conclude that s = 12. Next, we 

will identify possible seasonal components using the ACF and PACF plots and looking at 

lags that are a multiple of 12. 

 

 

We notice that the ACF trails off at around lag 24, therefore, Q = 2. Also, by looking at the 

PACF above, we can see that there are large spikes around lag 12 before cutting off, so since 

we have a seasonal period of s = 12, then this cut off at lag 12 suggests that P = 1. As a side 

note, we notice a spike in the PACF at lag 48, which indicates that a possible value for P can 

be seasonal P = 4. We will eliminate the model where seasonal P is large because it makes 

the model very complicated and may cause overfitting. Lastly, because we differenced once 

at lag 12 (our season) to get our model, , so we will set D=1. Now, we will identify X  ∇ 12 t  

the non-seasonal components of our model by looking at lags between 1 and 12 in our ACF 

and PACF plots. 
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For the non-seasonal part of our SARIMA, we notice that the trend was removed after 

differencing at lag 12, so we did not have to difference again at lag 1. Therefore, d = 0. If we 

look closely at the PACF (between lags 0 and 12), we notice that the PACF cuts off after 3. 

This indicates that p = 3. The ACF trails off after lag 0 and lag 3, but there does not seem to 

be a significant cut off point. The trail off after lag 3 in the ACF is a characteristic of an 

AR(3) model. Thus, we conclude that q = 0, q = 1, q= 2, or q = 3 . Therefore, we think that 

our time series model can be either: 

i)  SARIMA(3, , ) 1, ,( 0 0 × ( 1 2)12  

ii) SARIMA(3, , ) 1, ,( 0 1 × ( 1 2)12  

iii) SARIMA(3, , ) 1, ,( 0 2 × ( 1 2)12  

iv) SARIMA(3, , ) 1, ,( 0 3 × ( 1 2)12  

 

Narrowing Down Our Model 

We will now compare the AIC, AICc and BIC values for each model in the table below: 

Model AIC BIC AICc 

i)  SARIMA(3, , ) 1, ,( 0 0 × ( 1 2)12  -12.92723 -13.84537 -12.91962 

ii) SARIMA(3, , ) 1, ,( 0 1 × ( 1 2)12  -12.92709 -13.83353 -12.91912 

iii) SARIMA(3, , ) 1, ,( 0 2 × ( 1 2)12  -12.92309 -13.81783 -12.91472 

iv) SARIMA(3, , ) 1, ,( 0 3 × ( 1 2)12  -13.10557 -13.98862 -13.09675 
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We can see that model (iv) has the lowest AIC, BIC, and AICc followed by model (i). These 

models are very close, so using the idea of parsimony, I will eliminate model (iv) because it 

is the most complex model. Therefore, we will choose model (i): 

i) SARIMA(3, , ) 1, ,( 0 0 × ( 1 2)12  

Model Estimation 
Now we will fit this model using the Maximum Likelihood Estimator method: 

 

Model ar1 ar2 ar3 sar1 sma1 sma2 

ARIMA(3, , ) 1, ,S 0 0 × ( 1 2)12  0.1275 0.2808 0.4208 0.3403 -1.9865 0.9998 

 

Our full model can be written as: 

1 .1275B .2808B .428B )(1 .3403B )(1 )X  (1 .9865B .9998B )Z( − 0 − 0 2 − 0 3 − 0 12 − B12
t =  − 1 12 + 0 24

t  

where Zt ∼N(0, 1.627e​-5​) 

 

By solving for the roots from the equation and plotting them (Appendix Figure 1), we can 

see that they lie outside the unit circle. This means that the model is both stationary and 

invertible. Additionally, the absolute value for the coefficient of the seasonal AR part is less 

than 1, so it is stationary. Now that we have our model, we can move forward with the 

model diagnostics. If this model does not pass diagnostic checks, then we will go back and 

try our second larger model, which is ARIMA(3, , ) 1, ,S 0 3 × ( 1 2)12  

 

Model Diagnostics 

Now that we have fit the model, we need to check diagnostics to ensure our assumptions 

that the model is estimated upon are valid. These assumptions are the Normality of the 
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errors, there does not exist a serial correlation within the model, and the model  is 

homoskedastic. These assumptions in more clear language are that the errors follow a 

normal distribution, the data is not serially correlated to itself, and that the data show 

constant variance across time. 

 

1. Normality of Errors 
First, to assess the assumption that the errors are normally distributed. We want this to be 

the case in our model, as it shows that our model’s errors fall equally above and below true 

values which is evidence of unbiased estimators which indicates a good model fit.  To check 

the normality of errors we want to look at the QQ Plot of the errors around the mean of the 

time series, a histogram of the errors, and use the Shapiro Wilk Test to test if the residuals 

are approximately IID Gaussian.  

 

For the QQ Plot, we want to see that the errors hug close to the 45° line shown in blue in 

the plot. 

 

This is exactly what we see in our QQ Plot. This is good evidence that the errors are 

normally distributed.  
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Then, to further our intuition that the errors are indeed Gaussian, we can also examine a 

histogram of the values the errors themselves take. We have superimposed a normal 

distribution on top of the errors’ histogram, with a mean of zero and a variance estimated 

by the fact that 99.9% of data in a normal distribution falls within 3 standard deviations of 

its mean. This histogram is shown below. 

 

This is further evidence that our errors are normally distributed. 

 

Finally, we employed a Shapiro-Wilkes Test. Specifically, we are testing the null hypothesis 

that the errors follow a normal distribution, versus the alternative hypothesis that the 

errors are not normally distributed. After using this test in R on our errors we receive a 

p-value of 0.6754. Using the rejection rule at 𝛂 = 0.05, if P-value > 0.05, we would reject the 

null hypothesis. Here, our null hypothesis is that the residuals are approximately IID 

Gaussian. Since, 0.6754 is ​not​ less than 0.05, we fail to reject the null hypothesis. Thus, the 

assumption that the residuals are approximately IID Gaussian is valid.  
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2. Serial Correlation Detection 

We want to ensure that our data does not exhibit patterns of serial correlation because if 

there is serial correlation then that means that OLS is no longer an efficient linear 

estimator, the reported standard errors are likely incorrect and usually overstated, and the 

OLS estimates are biased and inconsistent due to the lagged dependent variable being used 

as a regressor. Thus, to ensure our model is not serially correlated is of high importance. To 

check we can examine a few things. First, we can examine the autocorrelation plot of the 

errors to visually examine if we will observe serial correlation which will be shown in the 

ACF by significant valued correlations. This is due to the fact that if we have serial 

correlation, then we would expect that errors have significant autocorrelation amounts at 

different lags.  In our model, we get the following ACF for our errors. 

 

 

So, we observe that at most of the lags in the errors, we have borderline significant values 

for the autocorrelation. To determine quantitatively if we have serial correlation present, 

we can use a use the Ljung-Box (Modified Box-Pierce) Lack-of-Fit Test. With this, we are 
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testing 𝝆​1​ = 𝝆​2​ = … = 𝝆 ​k​ = 0 for all k (where 𝝆 ​i​ = is the autocorrelation of the residuals atH0 :  

lag i) verus the alternative hypothesis There exists j in {1,..,k} such that 𝝆 ​j​ ≠ 0.HA :  

After employing this test in R, we obtain a p-value of 0.7875. So, using the rejection rule at 

𝛂 = 0.05, if P-value > 0.05, then we reject the null hypothesis. Here, our null hypothesis is 

that the residuals are uncorrelated. Since, 0.7875 is not less than 0.05, we fail to reject the 

assumption that the residuals are uncorrelated. Thus, we can say that no serial correlation 

is present, and therefore assumption 2 is upheld. 

 

3. Homoscedasticity 

Homoscedasticity means that the variance shown is approximately constant throughout 

time. Or in other words, that we do not observe periods where in the variance is 

significantly larger or smaller than other periods. Heteroskedasticity, when the variance of 

the time series ​does ​change over time periods, is a problem in a similar fashion to serial 

correlation. If we have heteroskedasticity, then the OLS estimates are no longer the BLUE 

(Best Linear Unbiased Estimators) because they are no longer efficient, so the regression 

predictions will be inefficient too. Additionally, due to non-constant variance the estimate 

for the covariances will be inaccurate and as a result the resulting hypothesis tests (t-test, 

F-test) become invalid to use when heteroskedasticity is present.  To check for 

heteroskedasticity, we can examine a few things. First, we can examine the autocorrelation 

and partial autocorrelation plots of the squared residuals. The intuition behind this, is that 

the errors should be normally distributed with mean zero and variance . By definitionσ2
Z  

of variance, the variance of , the white noise component of the time series, is defined by:Z t  

V ar(Z ) E[(Z ) ] E[(Z ) ]  E[(Z ) ] σZ2 =  t =  t − μ 2 =  t − 0 2 =  t
2  

So, examining the autocorrelation of the squared errors should tell us about the variance. 

Thus, if there is not heteroskedasticity in the data, then we should observe that in the ACF 

and PACF of the errors, there will be values present that lack significance. Or in other 

words, the ACF and PACF should all be within acceptable bounds for simple white noise.  
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We observed the following plots of ACF and PACF for our errors. 

  

 

So, based on these it would appear from the ACF and PACF of the squared residuals that 

our errors are homoskedastic. Additionally, the Ljung-Box test, also quantitatively validates 

the assumption that our errors are homoskedastic.  

 

Our model passes all of the diagnostic checks, and thus, our model is valid since it upholds 

of all of its assumptions. 

Forecasting 

Now that we found a suitable model for our data, we can forecast future retail alcohol sales 

for the next 12 months (1 year). Below is a plot forecasting our original data (You can find a 

plot forecasting our transformed data in the Appendix). We can clearly see in the graph 

below that the predicted values follow nearly an identical seasonal pattern as the current 

data. There is a predicted spike in sales, followed by a drop. Additionally, we see that the 
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prediction follows the same upward trend we noticed from the original data, all while the 

variance increases. From a general perspective, we can predict that future sales for next 

year will follow a close pattern as previous years. We can see the predicted value (blue 

points) follow very closely with the actual values (black line). This is an indication that the 

model we chose works very well with the data. It recognizes the trend, seasonality, and 

increasing variance of the original sales data. 
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Spectral Analysis 

The idea of spectral analysis is to decompose a stationary time series {Xt} into a 

combination of sinusoids, with random (and uncorrelated) coefficients. Instead of the time 

domain, spectral analysis uses the frequency domain, an approach that considers 

regressions on a sinusoid. The model will look like a Fourier Series. 

X​t​= μ + ∑​k​j=1​(A​j​cos2𝝅v​j​t + B ​j​sin2𝝅v​j​t), where v= frequency 

 

Periodogram 

A periodogram graphs a measure of the relative importance of possible frequency values 

that might explain the cyclical pattern of our data.  

 

The periodogram pictured identifies the eight most dominant frequencies in our model. 

These frequencies can then determine the coefficients A​j​ and B​j​. After plotting our 

stationary data our eight most common frequencies observed  are  0.025000, 0.346875, 
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0.021875, 0.012500, 0.037500 0.350000, 0.015625, 0.431250. Now using a regression the 

corresponding A​j​ and B​j​ can be calculated.  

After fitting a linear model onto the sinusoidal representation of our time series, our final 

spectral model can be represented as  

 

X​t​ ≈  -8.47e​-04​ +  2.439e​-04​cos(2π ∗0.025t)   +  7.320e​-05​sin(2π ∗0.025t) - 

  2.617e​-04​cos(2π ∗0.346875t) -  2.835e​-05​sin(2π ∗0346875t)  

-1.498e​-04​cos(2π ∗0.021875t) + 1.995e​-04​sin(2π ∗0.021875t)  

-3.1302e​-04​cos(2π ∗0.0125t)  -1.511e​-05​sin(2π ∗0.0125t)  

-6.0589e​-05​cos(2π ∗ 0.0375t)   +   2.003e​-04​sin(2π ∗ 0.0375t)  

+ 1.458e​-04​cos(2π ∗0.35t) -8.726e​-05​sin(2π ∗0.35t) 

+ 1.477e​-04​cos(2π ∗0.015625t)  

+ 4.355e​-05​sin(2π ∗0.43125t) +1.25e​-04​sin(2π ∗0.43125t)  

It should be noted that the data used for this spectral analysis must be stationary, therefore 

the transformed and deseasonalized data was used to develop this model. Below is a plot of 
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a comparison between the plot of the stationary data and the data approximated using 

spectral analysis.  

From the plot above it seems that spectral techniques represent our data fairly well, 

nevertheless our adjusted R​2 ​value is only 0.4858. Therefore, about 48.58% of the variance 

in the data can be explained by the spectral analysis, which shows that our data very much 

resembles a sinusoid.  

 

Periodicities in Stationary Model 

We will use the Fisher test and Kolmogrov-Smirnov test on the stationary data to see if 

there are any periodicities. If there are, this means we can represent the data with a 

sinusoidal function. The null hypothesis is that there are no periodicities. Below, we see 

that the null is rejected for the Kolmogrov-Smirnov. In addition, the Fisher test gives us a 

value of 5.495556e​-08​. Therefore, there are periodicities and we can use a sinusoidal 

function. Now we will test the residuals. 
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Fisher Test 

The Fisher test enables one to test the data for the presence of hidden periodicities with 

unspecified frequency(Lec 10 pg.18). This test is applied to the residuals and a value of 

0.2824072 ​is returned therefore the Fisher Test passed, and we can confirm that the 

simulation can be represented as Gaussian White Noise.  

Kolmogorov-Smirnov Test 

The Kolmogorov- Smirnov test can also be used to test whether the residuals follow 

Gaussian White Noise.  
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The cumulative periodogram never exits the boundary, therefore according to this test our 

residuals are Gaussian white noise. Since both tests pass we conclude the residuals of our 

final spectral model are Gaussian White Noise. We accept the null that there are no hidden 

periodicities. 

Conclusion 

Our goal is to construct a time series model that can explain the alcohol sales in the United 

States from the past 25 years and to predict its future sales 12 months ahead. We have 

observed that the data exhibited an upward trend with heteroscedasticity. Furthermore, 

we have observed a pattern and seasonality in the data that shows that the sales reaches its 

maximum per year in each December. This may potentially be the result of social drinking 

in the Christmas holiday season and the desire to consume copious amounts of alcohol 

before giving it up as a New Years Resolution. After making our data stationary, we narrow 

down our model by the model selection process and conduct diagnostic checks. Our final 

model is displayed below.  
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Let X​t ​be the transformed and differenced data:  

∇ X   B   Y t =  12 t = ∇12 t
−0.2222

 

           ​  SARIMA(3,0,0)x(1,1,2)​ 12 

1 .1275B .2808B .428B )(1 .3403B )(1 )X  (1 .9865B .9998B )Z( − 0 − 0 2 − 0 3 − 0 12 − B12
t =  − 1 12 + 0 24

t  

where Zt ∼N(0, 1.627e​-5​) 

 

Our forecast indicates that between December 2017 and November 2018, the retail sales of 

alcohol will continue to increase. Since our forecast lies in the 95% confidence range, our 

model proves to be feasible. Finally, we performed spectral analysis to approximate the 

model into a combination of sinusoids using a periodogram and tests.  

 

The goal of our project was to predict future monthly American alcohol sales using 

methods of time series analysis. Overall, we have accomplished this goal and gained a 

deeper insight into the booze industry in the United States.  

 

We cordially thank Professor Bapat for teaching us over the course of the past 10 weeks. He 

has been super helpful and supportive in the learning process of such a difficult class. 

Additionally, we would like to thank our TAs for helping us along the way and contributing 

their time to allow us to master the material. Thank you for everything! 
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Figure 1 
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Figure 2 

 

Figure 3 
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Appendix: Code 
knitr::opts_chunk$set(echo = T, warning=F, message=F, results='hide') 
library(tseries) 
library(tidyverse) 
library(forecast) 
library(plotrix) 
library(MASS) 
library(astsa) 
library(GeneCycle) 
library(TSA) 
library(car) 
library(lattice) 
 
booze <- read.csv("booze.csv", header = TRUE) 
str(booze) 
head(booze) 
 
#Convert Data to time series 
booze <- ts(booze[,2],frequency = 12, start = c(1992,1)) #Monthly data points 
var_og <- var(booze) 
 
#Stabilize Variance 
#Plot raw time series 
ts.plot(booze, main = "Monthly Retail Sales: Beer, Wine, and Liquor Stores" ) 
 
time <- 1:length(booze) 
lin.model <- lm(booze ~ time) 
 
predicted <- predict(lin.model) 
residuals <- residuals(lin.model) 
xy <- data.frame(time,booze,predicted,residuals) 
 
ggplot(xy, aes(x = time, y = booze)) + 
  geom_smooth(method = "lm", se = FALSE, color = "lightgrey") + 
  geom_segment(aes(x = time,y = booze,xend = time, yend = predicted), alpha = .5) + 
  geom_point(aes(x = time, y = booze, fill = "Actual"), size = 0.4)+ 
  ggtitle("Linear Model Intuition for Slight Heteroscedacity") 
 
qqnorm(residuals, pch = 1, frame = FALSE) #QQ plots 
qqline(residuals, col = "steelblue", lwd = 2) 
 
#Do Box-Cox 
transforms <- boxcox(booze~c(1:length(booze))) 
which_transform <- data.frame(transforms)%>% 
  filter(y == max(y)) 
 
which_transform <- which_transform$x 
BoxCox <- function(data, lambda){ 
  data_transformed <- data^lambda 
  return(data_transformed) 
} 
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#Transform the time series 
booze2 <- BoxCox(booze, which_transform) 
 
#Examine the effects 
ts.plot(booze2, main = "Monthly Retail Sales: Beer, Wine, and Liquor Stores After Box-Cox 
Transform" ) 
 
time <- 1:length(booze2) 
lin.model2 <- lm(booze2 ~ time) 
 
predicted2 <- predict(lin.model2) 
residuals2 <- residuals(lin.model2) 
xy2 <- data.frame(time,booze2,predicted2,residuals2) 
 
ggplot(xy2, aes(x = time, y = booze2)) + 
  geom_smooth(method = "lm", se = FALSE, color = "lightgrey") + 
  geom_segment(aes(x = time,y = booze2,xend = time, yend = predicted2), alpha = .5) + 
  geom_point(aes(x = time, y = booze2, fill = "Actual"), size = 0.4)+ 
  ggtitle("Linear Model After Box-Cox")+ 
  ylab("Price Transformed") 
 
 
var_boxcox <- var(booze2) 
 
qqnorm(residuals2, pch = 1, frame = FALSE) 
qqline(residuals2, col = "steelblue", lwd = 2) 
 
 
decomposed_model <- stats::decompose(booze2, type = "additive") 
 
autoplot(decomposed_model, main = "Additive Decomposition Plot")+ 
  xlab("Time in Months") 
 
 
 
#Examine the data for seasonality 
seasonplot(booze2, 12, col = rainbow(12),year.labels = TRUE, main = "Annual Seasonality Plot") 
head(booze2) 
var(booze2) 
ts.plot(booze2, main = "Box-Cox Transformed Data") 
 
 
#Remove Seasonality 
booze_diff_seasonality <- diff(booze2, lag = 12) 
ts.plot(booze_diff_seasonality, main = expression(paste(nabla[12],X[t])), ylab = "Seasonality 
Removed") 
var_season_removed <- var(booze_diff_seasonality) 
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#Remove trend 
booze_stationary <- diff(booze_diff_seasonality, lag = 1) 
#ts.plot(booze_diff_seasonality, main = expression(paste(nabla,nabla[12],X[t]))) 
 
var_stationary_diff1 <- var(booze_stationary) 
#Check if more differencing helps 
once_more <- diff(booze_stationary, lag = 1) 
var_stationary_diff2 <- var(once_more) 
two_more <- diff(once_more, lag = 1) 
var_stationary_diff3 <- var(two_more) 
variances <- c(var_boxcox,var_season_removed,var_stationary_diff1,var_stationary_diff2, 
var_stationary_diff3) 
labels1 <- c( expression(X[t]), expression(paste(nabla[12], X[t])), expression(paste(nabla, 
nabla[12], X[t])), expression(paste(nabla^2, nabla[12], X[t])), expression(paste(nabla^3, nabla[12], 
X[t]))) 
 
#check difference in variance 
barplot(variances,names.arg = labels1, col = "gold", xlab = "Time Series", ylab = "Variance", main = 
"The Effect of Differencing") 
 
#dickey fuller test 
adf.test(booze2) 
 
#Make Train and Test Sets 
par(cex.main = 0.8) 
booze_data <- ts(booze_diff_seasonality,frequency = 12, start = c(1992,1)) #Monthly data points 
#Split data into train and test sets. 
booze_train <- head(booze_diff_seasonality, length(booze_diff_seasonality) - 12) 
booze_test <- tail(booze_diff_seasonality,12) 
 
# Define Acf and Pacf 
acf_seasonality <- Acf(booze_diff_seasonality, lag.max = 72, main = "Sample ACF", plot = FALSE) 
pacf_seasonality <- Pacf(booze_diff_seasonality,lag.max = 72, main = "Sample PACF", plot= FALSE) 
 
acf_seasonality <- data.frame(ACF = acf_seasonality$acf, lag = acf_seasonality$lag) 
pacf_seasonality<- data.frame(PACF = pacf_seasonality$acf, lag = pacf_seasonality$lag) 
 
# Plot ACF 
ggplot(acf_seasonality, aes(x = lag, y = ACF, fill = if_else(lag%%12 == 0, "blue", "red")))+ 
  geom_col()+ 
  geom_hline(yintercept = 0.1)+ 
  geom_hline(yintercept = -0.1)+ 
  theme(legend.position="none")+ 
  ggtitle("Seasonal ACF (Stationary)")  
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# Plot PACF 
ggplot(pacf_seasonality, aes(x = lag, y = PACF, fill = if_else(lag%%12 == 0, "green", "red")))+ 
  geom_col()+ 
  geom_hline(yintercept = 0.1)+ 
  geom_hline(yintercept = -0.1)+ 
  theme(legend.position="none")+ 
  ggtitle("Seasonal PACF (Stationary)") 
 
# Set up for smaller graph 
acf_stationary2 <- Acf(booze_diff_seasonality, lag.max = 12, main = "Sample ACF", plot = FALSE) 
pacf_stationary2 <- Pacf(booze_diff_seasonality,lag.max = 12, main = "Sample PACF", plot= FALSE) 
 
acf_stationary2 <- data.frame(ACF = acf_stationary$acf, lag = acf_stationary$lag) 
pacf_stationary2 <- data.frame(PACF = pacf_stationary$acf, lag = pacf_stationary$lag) 
 
# Plot ACF Close Up 
ggplot(acf_stationary2, aes(x = lag, y = ACF, fill = if_else(lag%%3 == 0, "blue", "red")))+ 
  geom_col()+ 
  geom_hline(yintercept = 0.1)+ 
  geom_hline(yintercept = -0.1)+ 
  theme(legend.position="none")+ 
  ggtitle("Interseasonal ACF")  
 
# Plot Pacf Close Up 
ggplot(pacf_stationary2, aes(x = lag, y = PACF, fill = if_else(lag%%3 == 0, "blue", "red")))+ 
  geom_col()+ 
  geom_hline(yintercept = 0.1)+ 
  geom_hline(yintercept = -0.1)+ 
  theme(legend.position="none")+ 
  ggtitle("Interseasonal PACF") 
 
 
decomposed_model_train <- stats::decompose(booze_train, type =  "additive") 
 
autoplot(decomposed_model_train, main = "Additive Decomposition Plot")+ 
  xlab("Time in Months") 
 
# Model Selection 
sarima(booze2, 3,0,0,1,1,2,12,details = FALSE, Model = FALSE)$AIC 
sarima(booze2, 3,0,1,1,1,2,12,details = FALSE, Model = FALSE)$AIC 
sarima(booze2, 3,0,2,1,1,2,12,details = FALSE, Model = FALSE)$AIC 
sarima(booze2, 3,0,3,1,1,2,12,details = FALSE, Model = FALSE)$AIC 
 
sarima(booze2, 3,0,0,1,1,2,12,details = FALSE, Model = FALSE)$AICc 
sarima(booze2, 3,0,1,1,1,2,12,details = FALSE, Model = FALSE)$AICc 
sarima(booze2, 3,0,2,1,1,2,12,details = FALSE, Model = FALSE)$AICc 
sarima(booze2, 3,0,3,1,1,2,12,details = FALSE, Model = FALSE)$AICc 
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sarima(booze2, 3,0,0,1,1,2,12,details = FALSE, Model = FALSE)$BIC 
sarima(booze2, 3,0,1,1,1,2,12,details = FALSE, Model = FALSE)$BIC 
sarima(booze2, 3,0,2,1,1,2,12,details = FALSE, Model = FALSE)$BIC 
sarima(booze2, 3,0,3,1,1,2,12,details = FALSE, Model = FALSE)$BIC 
 
# Check for causality/invertibility 
source(“plot.root.R”) 
par(mfrow=c(1,3)) 
plot.roots(ma.roots = NULL, polyroot(c(1, 0.13, 0.28, 0.42)), main="Roots for AR part") 
plot.roots(ma.roots = NULL, polyroot(c(1, 0.34)), main="Roots for Seasonal AR part", size = 3) 
plot.roots(ar.roots = NULL, polyroot(c(1, -1.98, 0.99)), main="Roots for Seasonal MA part", size = 1) 
 
# Fit the Model using MLE 
booze_fit <- arima(booze_train, order = c(3,0,0), seasonal = list(order = c(1,1,2), period = 12), 
method = "ML") 
 
booze_fit 
 
 
#Now that we have fit the model, we need to check diagnostics to ensure our #assumptions on the 
model are valid. These assumptions are: 

#1.        Normality of Errors 
#2.        No Serial Correlation 
#3.        Homoskedasticity 
 
#Get residuals 
residuals <- booze_fit$residuals 
 
#Plot QQ  
qqnorm(residuals) 
qqline(residuals, col = "dodgerblue", lwd = 2) 
 
#estimate standard deviation using the fact that 99.9% of data between 3 standard devations 
sigma_hat = (max(residuals) - min(residuals))/6 
 
#Plot a histogram of the residuals 
hist(residuals, probability = TRUE) 
 
#overlay the estimated normal distribution onto the residuals 
curve(dnorm(x,0,sigma_hat), xlim = c(-0.02,0.02),add=TRUE, yaxt="n", lwd = 2, col = 

"dodgerblue") 
legend("topright", legend=c("Normal(0,0.00405)"), 
 col=c("dodgerblue"), lty=c(1),lwd = c(2), cex=0.8) 
 
#2 check for serial correlation 
acf(residuals, lag.max = 300) 
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#Perform Ljung-Box test 
Box.test(residuals, type = "Ljung-Box") 
 
#3 check Homoskedacity 
pacf(residuals2, lag.max = 120, main = "") 
title(expression(Errors^2), line = 0.6) 
 
#predictions on transformed data 
pred_Tr= predict(booze_fit, n.ahead = 12) 
 
#upper and lower bounds by point estimate +- 2* standard error since 2-approx 1.96 Z(0.025) 
Up_tr = pred_Tr$pred+2*pred_Tr$se 
Do_tr = pred_Tr$pred-2*pred_Tr$se 
preds = pred_Tr$pred 
 
#plot series and  predictions  
ts.plot(booze_train, col = "red",  main= "Prediction Based on Transformed Data", xlim = 

c(1992,2020)) 
points( preds,col='blue') 
lines(Up_tr, lty="dashed") 
lines(Do_tr, lty="dashed") 
lines(booze_test) 
 
 
#FORECASTING 
#create train/test untransformed data 
booze_train_OG <- head(booze, length(booze)  - 12) 
booze_test_OG <- tail(booze, 12) 
#refit model to original non-transformed data 
test_OG <- arima(booze_train_OG, order = c(3,0,0), seasonal = list(order = c(1,1,2), period = 

12), method = "ML") 
 
preds_nonstationary <- predict(test_OG, n.ahead = 12) 
 
#Set up Confidence Bounds 
upper <- preds_nonstationary$pred+2*preds_nonstationary$se 
lower <- preds_nonstationary$pred-2*preds_nonstationary$se 
 
#predictions 
preds = preds_nonstationary$pred 
 
# Plot of forecasting original data 
ts.plot(booze_train_OG, col = "red",  main= "Prediction Based on Original Data", xlim = 

c(1992,2020)) 
points( preds, col='blue') 
lines(upper, lty="dashed", col = "green") 
lines(lower, lty="dashed", col = "green") 
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lines(booze_test_OG) 
 
# Plot of close up  of forecasting original data 
ts.plot(booze_train_OG, col = "red",  main= "Prediction Based on Original Data CLOSE UP", xlim 

= c(2016,2019)) 
lines(booze_test_OG, col="black") 
points(preds,col='blue') 
lines(upper, lty="dashed", col = "green") 
lines(lower, lty="dashed", col = "green") 
 
 
#SPECTRAL ANALYSIS 
 
periodogram(booze_diff_seasonality, main= 'Periodogram on the Stationary Data') #find the 

frequencies 
abline=0 
ch = periodogram(booze_diff_seasonality) 
# grabs the top 8 frequencies since after checking this had the most ‘significant’  
FREQ = ch$freq[order(ch$spec, decreasing=T)][1:8] FREQ #top 8 are FREQ 
 
t = 1:311 #size of dataset 
w=2*pi*t #w is always this 
x1 = cos(w*FREQ[1])  
x2= sin(w*FREQ[1]) 
x3 = cos(w*FREQ[2]) 
x4= sin(w*FREQ[2]) 
x5 = cos(w*FREQ[3]) 
x6= sin(w*FREQ[3]) 
x7 = cos(w*FREQ[4]) 
x8= sin(w*FREQ[4]) 
x9 = cos(w*FREQ[5]) 
x10= sin(w*FREQ[5]) 
x11= cos(w*FREQ[6]) 
x12= sin(w*FREQ[6]) 
x13 = cos(w*FREQ[7]) 
x14= sin(w*FREQ[7]) 
x15= cos(w*FREQ[8]) 
x16= sin(w*FREQ[8]) #these are the x’s for the different frequencies 
z = 

lm(booze_diff_seasonality~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x1
5+x16) #z is our fit 

summary(z)  
#to get our adjusted R squared value 
coeffs=lm(booze_diff_seasonality~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x

15+x16)$coeff #get the coefficients  
resid=lm(booze_diff_seasonality~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x

15+x16)$resid #grabbing the residuals to be tested later on fisher and kolmogorov test 
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y = 
coeffs[1]+coeffs[2]*x1+coeffs[3]*x2+coeffs[4]*x3+coeffs[5]*x4+coeffs[6]*x5+coeffs[7]*x
6+coeffs[8]*x7+coeffs[9]*x8+coeffs[10]*x9+coeffs[11]*x10+coeffs[12]*x11+coeffs[13]*x
12+coeffs[14]*x13+coeffs[15]*x14+coeffs[16]*x15+coeffs[17]*x16  

#this is the final spectral model 
 
op = par(mfrow=c(2,1)) 
 
 
plot(t,y, type='l') 
plot(booze_diff_seasonality, ylab= "Stationary Data") #plotting the two models 
par(op) 
spline <- smooth.spline(c(1:length(y)), y) # you choose lambda 
plot(y, col = "blue") 
lines(1:length(y), predict(spline, x = 1:length(y))$y, col = 'red') 
#graphs of our stationary data vs the spectral data 
 
# CHECK for periodicity. Test on stationary model 
cpgram(booze_diff_seasonality) #Kolmogorov-Smirnov test 
fisher.g.test(booze_diff_seasonality) #fisher test 
 
# CHECK residuals to make sure they are Gaussian White Noise. Same test on residuals 
cpgram(resid) #Kolmogorov-Smirnov test 
#fisher test 
fisher.g.test(resid) #this is greater than .05 so this passes 
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